

Can machine learning help improving environmental impact assessment ?

Gabriel JARRY

Operational context

Current trend to control pollutant emissions and noise

Limitation examples

Geometric CDO

Level flight

Limitation examples

Geometric CDO

Level flight

Philosophy

Proof of concept

Input parameters

15pts every 4s (1min)

altitude (ft), ground speed (kts), vertical speed (ft/min)

Models error quantification

Parameter	Metric	Mean Score
Fuel Flow	Pearson Correlation	0.938
Fuel consumption	ME	3.8%
Landing Gear	Distance MAE	0.99NM
Flap Setting	Distance MAE	1.28NM

A Machine Learning & Environmental Impact Gabriel JARRY

dgac

DSNA

Machine Learning & Environmental Impact Gabriel JARRY

8

Machine Learning & Environmental Impact Gabriel JARRY

dgac

D S N A

Limitation examples

Altitude

---- Flaps 1

Fuel Flow

Geometric CDO Altitude Noise Metric 0.21 Flaps 1 ----Noise Metric 0.11 Altitude (ft) Altitude (ft) Complementary C metrics enable a more precise Fuel Flow Fuel Metric 0.2 impact estimate Fuel Metric 0.08 1500 · (kd/µ) 1250 · (kd/µ) 1000 · (kd/µ) 0 ·

Level flight

Distance to Threshold (NM)

Machine Learning & Environmental Impact **Gabriel JARRY**

Distance to Threshold (NM)

Granularity of metrics

Real time extension for ATC (POC)

Atypical approach detection

SESAR digital academy

Machine Learning & Environmental Impact Gabriel JARRY 13

Next step and improvments

Conclusions

- Machine Learning could enables the improvement of system evaluation metrics such as environmental metrics
- Machine Learning could contribute to a collaborative ground/onboard improvement of the overall efficiency of the ATM system

Thank you for your attention !

Appendix : Generalization B737

Parameter	Metric	Mean Score LFPO	Mean Score GMAD
Fuel Flow	Pearson Correlation	0.917	0.921
Fuel consumption	ME	4.35%	4.86%
Landing Gear	Distance MAE	1.23 NM	1.86NM

Appendix : Generalization A330

Parameter	Metric	Mean Score LFPO
Fuel Flow	Pearson Correlation	0.930
Fuel consumption	ME	4.84%
Landing Gear	Distance MAE	1.63 NM

